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We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative
sign with a probabilityp. Such path sum3 have been used to model interference effects by hopping electrons
in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings,
ignored by mean field approaches, while still permitting analytical treatment. Here we perform a scaling
analysis of the controversial “sign transition” using Monte Carlo sampling, and conclude that the transition
exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the
moments(J") always determine, uniquely, the probability distributi®ifJ). We also derive, exactly, the
moment behavior as a function pfin the thermodynamic limit. Extrapolationsa{-0) to obtain(In J) for odd
and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis
of high moments yield interesting “solitonic” structures that propagate as a functipn Bfnally, we derive
the exact probability distribution for path surdsup to lengthL =64 for all sign probabilities.
[S1063-651X98)04610-9

PACS numbeps): 02.50.Ng, 64.60.Cn, 72.20i

I. INTRODUCTION did not exist abovey=0.025 in two dimensions. Neverthe-
less, the decay of the order paramedd? as a function of
Sums of directed paths are present in numerous models g/stem size was found to be anomalously slow for fipite
disordered systems. Polymer configurations in a disorderetee also Ref{3]). Thus, more recently, Spivak, Feng, and
matrix, dynamics of interfaces grown by depositidj and  Zeng [7] discussed numerical results that suggest a finite
Feynman path sums for electron hopping between impuritiegimp in the order parameter indicating a first order transition
[2,3] are only a few of the relevant examples. In this paperfor the sign problem. The authors also implied that the mo-
we focus on the latter example, involving a model first intro-ments(J") increase faster tham! asn— o, indicating there
duced by Nguyen, Spivak, and ShklovskNSS for inter-  is no unique relation betwedd") and the probability distri-
ference effects in the strongly localized regip2g. bution P(J). This is an important point since the moments,
In the directed path sign model one studies the sum of alin such a case, may not contain information about the tran-
possible directed paths between two sites on a lattice. Osition. Finally, in a recent paper by Nguyen and Gamietea
each lattice bond, one places a random sign with probabilityg], a renewed extensive study of the parameddf(J)
p. Each directed path evolved is then computed by multiply-proves that, at least according to such a parameter, no tran-
ing the values of the bonds it crosses. Finally the Sumfhall  sition exists; only a strong crossover from logarithmic to
paths is obtained. The proponents of the mddébbtained, exponential behavior is observed.
numerically for small systems, that a second order transition Besides the numerical approaches, mean field type ap-
occurred afp,~0.05 between a phase with preferential signproximations by Obukho{9] point to a second order transi-
(for the path suml), and a phase with no preferential sign. tion for dimensionsd=4. Furthermore, Derrida and Cook
NSS also offered appealing arguments based on the behavidr0] also took up the problem, analytically, using a sparse
of 8J/(J). Presumably, such a parameter grows exponenmatrix approach. They generalized the model to random
tially above the transition, while it goes to zero belqy. phases, which includes random signs as a special case. Their
The physical relevance of this transition lies in the fact that itapproach is mean field in nature, and results in a phase dia-
may signal the change between Aharonov-Bohm oscillationgram where the sign transition is of second orflet] (see
of period hc/e and those ofhc/2e [2] in the context of also Ref[12]). Nevertheless, mean field results may not ap-
hopping conduction. ply to lower dimensions due to the importance of path cross-
The NSS argument was later contended by Shapir anthgs[4].
Wang [4], arguing that correlations between paths implied Here we address the following issuél: What is the or-
that §J/(J) does not necessarily go to zero for gmySub-  der of the sign transition through a scaling analysis of the
sequently, Wangt al.[5] used an exact enumeration schemeorder parameter proposel’) Do moments of the path sums
to probe the transition for small lattices of maximum sizedetermine the probability distribution uniquel(i#) What is
L=9. The work found no evidence of a transition abovethe exact behavior of the parame#¥/(J) above and below
negative sign probabilityp=0.02. Such conclusions were the transition? An interesting perspective will be gained by
supported by Zhae@t al. [6] on the basis of numerics, for using a hierarchical lattice: Such lattices, while still ame-
large square lattices, where it was assumed that the transitiorable to analytical manipulation, include crucial path corre-
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lation effects absent in the mean field. i i i
The paper is organized as follows: Section Il discusses the
sign model and describes hierarchical lattices. In Sec. I, we
perform detailed Monte Carlo simulations, close to the tran-
sition, for systems up to size=512. A scaling analysis is - -
performed for the order parameteéxP=P(J>0)—P(J
<0) to distinguish between first and second order transi-
tions. In Sec. IV we study the momen{3") exactly, using f f f
moment recursion relatio4d.3]. We find that moments de- L=1 L=2 L=4
termine the distribution uniquely according to Carlemans
theorem, and find possible indications of a phase transition FIG. 1. Hierarchical lattices are built by repeating a chosen mo-
from odd and even moment extrapolationsnte 0. In this  tif, each bond turns into a diamond recursively. The figure shows
section we also discuss the high moment behavior, unveilinguccessive iterations of the lattice and the corresponding length
interesting structures as a function of the sign probabiity Petween end points and f. Examples of a directed path at each
Subsequently, we probe the paramet@k(J) exactly, show- order are indicated by contiguous arrows.
ing its unambiguous crossover between exponential and
logarithmic behavior. In Sec. V we obtain the exact probabil-
ity distribution for lattice size = 16, and sample the distri- =211 », (2)
bution for up toL =64 as a function op. We end with the b
conclusions and a discussion of the mapping of the moments
to ann-body partition function in one dimension as a con-
tinuum model that might aid in explaining the curious highWhere »; is a random sign according to the distribution
moment behavior. P(n)=pd(n—1)+(1-p)s(n+1). The probabilityp in
the NSS model emulates the relative abundance of levels
above and below the Fermi ener@]. This model has been
very successful in explaining qualitative and quantitative fea-
Imagine two reference points on a lattice between whichures of conduction in the strongly localized regime. In par-
one would like to evolve all possibleirected pathsand ticular, intriguing interference effects producing a character-

II. SIGN MODEL

compute a “partition function” istic periodicity of magnetic field oscillation§16] and
changes in the localization length due to nonlocal effects
‘]:2 T, (1) [3,17]. In spite of the seemingly different nature of disorder
I

in the NSS model, replica arguments and numerics have

shown that it belongs to the same universality class of di-
whereT'; represents each individual contributing path. Byrected polymers with positive weighf8,18], at least forp
directed it is meant that paths always propagate in the forclose tos.
ward direction without loops or overhangs. The random me- We have taken up the sign model on hierarchical lattices,
dium in which these paths evolve can be represented by ags mentioned in Sec. I. A hierarchical lattice is a recursive
signing local weights[14] on the bonds or sites that are structure built by repeating a chosen m¢fif]. Depending
picked up by the paths as they wander to their final destinaen the latter motif, one can build integer dimensional objects
tion. Such a model has been used as a paradigm simulatinginulating Euclidean lattice. For this work we chose the
for example, a coarse-grained polymer or interface wanderBerker lattice or diamond. Such a motgee Fig. 1 has a
ing in a random matrix with locally favorable energy minima parameterb corresponding to the number of branches be-
[14]. The model is interesting because it yields anomalougween the initiali and finalf points. The lattice size is re-
lateral wandering and energy exponents for the interfaceated to the recursion orden asL=2""1, i.e., the number
polymer as compared to those generated by simple diffusiomgf bonds on any directed path betwdeandf. The number
signaling a new disorder-induced universality class in (1of bonds on the latticéor mas$ is given byM = (2b)™ 2,
+1) dimensions. so that the effective dimension of the lattice dgg=1

Another application, in an entirely different field, is in the + (log b/log 2). In this work we will useb=2 except if oth-

context of variable range hoppind5], a mechanism for erwise stated. Qualitative features of critical behavior of
conduction in insulators. In this context, one also needs tonany statistical models are correctly reproduced on such
sum over Feynman paths to compute the transition probabiktructures with no unphysical effects. In fact, mapping to
ity, between impurities, of current bearing electrons. Thehierarchical lattices is the basis of the Migdal-Kadanoff
Feynman paths, in this case, are directed because they aenormalization procedure, of frequent use in critical phe-
tunneling paths. Any elongation of the latter, in the form of nomena. As noted above, an important advantage of hierar-
loops or overhangs, is exponentially less probable. For furehical lattices over either Bethe lattices/mean field ap-
ther justification of the model we refer the reader to the reproaches is that path intersections are taken into account.
view in referencd3]. NSS studied such tunneling processes,Thus we expect that the resulting simulations will be more
and proposed a directed path model where the local weightgithful to low dimensional behavior. In fact, we will present,
are random signk2]. In such a model, the pafhy; is a prod- in Sec. IV, further evidence of the adequacy of hierarchical
uct of the signs it picks up en route to the final site. Writing lattices making contact with known recent results on the sign
Eq. (1) more explicitly, transition.
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FIG. 2. The figure shows the order paramepd?=P(J>0) FIG. 3. Same data as in Fig. 2 after collapsing the curves for

—P(J<0) as a function of the sign probability for system sizes different system sizes. The appropriate choicesprand v, the
indicated. Averages were performed over more than 20 000 realizaransition threshold and the correlation length exponent, are indi-
tions of randomness. Note the formation of a plateati Rt 1 for cated.
small p.
to the scaling of a first order transition. Furthermore, there is
lII. SIGN PHASE TRANSITION IN TWO DIMENSIONS no sign of a discontinuity in the order parameter, as sug-
gested in Ref[7]. We thus conclude that, on hierarchical
In this section. we have undertaken Monte Carlo S’irm”a_lattices, the transition exists and is second order as mean
tions on hierarchical lattices to check for scaling propertiesf'eldRpred'Ctsd 'Igles_elpoglglusmnhs_ are |E_aglr?etrtr_1ent V\fl'_tr? work
Paradoxically, scaling has only been discussed once befo ouxlan d r:)nlg 'O.[ blgle o_n lerar(f |caha |c§s_. here
in connection with the transitiofL.8], and it is a primary tool "€y @nalyzed the variable;=(n; —n;’), wheren;" is the
to assess its nature. It will be especially useful to clearlyfraCtIon of positive(negative paths arriving at site, and
distinguish between first order and second order transitiondN€Y Suggested a clear positivephase. The order of the
Hierarchical lattices were generated lte=512 or order transition for hierarchical lattices was not analyzed in detalil
10. Averages were taken over 20 000 realizations of disordeP! their paper. Nevertheless, they noted an undue emphasis
for a series op values between 0 and 0.5. As the size of theOf hierarchical lattices on the=0 result, and the possible
system increases, more detailed data were collected close fgPact of this on the scaling properties of various quantities.
the transition regime 0.85p<0.1. Figure 2 shows Monte We will come back to such observations, briefly, in Sec. V.
Carlo data for the order paramet®P as a function op. A V. MOMENT RECURSION RELATIONS
definite plateau aAP=1 develops a& increases for lowp, '

signaling a definite change in the order paramgtesitively A statistic we can probe exactly on hierarchical lattices

signed paths dominate are the moments of the probability distribution. This is pos-
For the proposed order parameter we should expect the
scaling formAP=f((p—p.)L*"). Figure 3 shows a good
collapse for the same data as the previous figure. As the o Pl =p.+ AL
order parameter is always between 0 and 1, we only need to ’ A=0.09£0.01
find p. and the correlation length exponentFor the hypo- P; = 0.072+0.001

thetical transition we find the valugg,=0.071+0.001 and S10T iwaoses002 E E

r=1.85+0.07 (1=0.54). The latter exponent is very dif-

ferent from that of percolation on these lattices

=In 2/(In 2+In(3—/5))=1.63529...; so the role of percola-

tion, if any, is not apparent. If the transition were first order 0.08

the exponent ¥/ would be the dimensionality of the system

d [20]. The nontrivial scaling found can also be seen by 007

taking the derivative of the order parameter and plotting its

maximum as a function of the system size. These criteria rule ) 01 0.2 03

out a first order transition. )
We have also monitored the evolutionmf(L) with size.

The specific value op (L) was found from the peak values |G, 4. The figure shows the value pf(L), evaluated from the

of the derivative of the order paramet&P. The resulting peaks of the derivative of the order parameter, as a function of

values are plotted in Fig. 4, where, within error bars, the(1/.)*. The last five sizes froh =32-512 have been fitted by a

values of 1/ andp(e) are confirmed. Summarizing, scal- least squares method to yield the asymptotic vaiiee)=0.072
ing is very good aroungh.=0.07, anddoes notcorrespond indicated.

0.09

P.(L)

0.4 0.5
v
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sible because of recursion relations derived by Cook anc 15

Derrida[21], and generalized to arbitrary moment and hier- 1000

archical ordersystem sizeby Medina and Karda13]. The 800
recursion relation fob=2 is 600 In(nt)
10 |
Jn _ é nl JS 2 Jn*S 2 (3)
< m+l>_S:O (n_s)!s! [< m>] [< m >] ’

>)/L

wheren is the moment number aneh is the hierarchical = 57
lattice order. This expression is readily generalized to othe %
integerb by changing the binomial factor to a multinomial, =
and including the additional branches. Hence one can emt
late higher-dimensional networks. The simple form of this o
recursion permits one, given the local moments at order 1, ti
compute moments to any given lattice size. Appropriate pro
gramming of the recursion relations, with arbitrary precision
computations, is linear in time with lattice order. -5 0 5 10 15 20

The behavior of the moments for the sign model is ex- n
tremely rich, as we shall see in the following. As found in
Ref. [13], after a few hierarchical orders, the values FIG. 5. The moments [@")/L as a function of the moment num-
|n((Jﬂ1))/L converge rapidly to a limiting form as a function ber n for the lattice sizes indicated. The figu_re shows the rapid
of n. Such limiting form is important because it also signalsCoNVergence to an asymptotic result. In the inset, we show that
the convergence to a unique limiting distribution, at least if'VMile the initial moments grow faster than exponential they never-
moments do not grow faster thar [22]. The asymptotic theless grow slower th_eun!,_so_the_re is a unique relation between
form of the moments can be obtained fo=0 [13,21], moments and probability distribution.

In{J" 1
<L ) n( 1=7]in2; (4 appears to be a phase transition for each moment at different
values ofp, in a way reminiscent of that discussed by Cook

that is, moments grow exponentially withfor p=0. Nev-  and Derrida[21] (in their case as a function of “tempera-
ertheless, for & p<3, lower moments grow slightly faster ture”). The transition for the first two moments occurs close
than exponentiallfexp?), with 1<a<2], gradually con- to p=0.075, which is close to that found from Monte Carlo
verging to exponential growth for larger moments. The lattersimulations in Sec. Ill. On this basis it is plausible that the
implies, according to the condition disappearance of sawtooth shape is related to the transition.

. Figure 6 shows a set of curves fdin((Jn)/L)/dn, and

S gz, . various values op andL=2%" up ton=100. The last six

=, (37 - ) orders of the hierarchical lattice collapse on the same curve,

indicating that we have achieved asymptotics. For the high-
that the moments determine the distribution uniquely. There
are various forms of such a theorem, but the above is the
strongest version due to Carlemf22]. If one substitutes
(32M ~ exp()—our asymptotic result—above, the criterion In2
is satisfied. Even if(J?") grows slightly faster i.e., ol
exp(In2n)~(2n)!, the above sum diverges because § oes| .-~ e s -
>,1/Ih=0o, Any faster growth would violate Eq5), facto- = ’
rial growth being the borderline case. That the moméats X
satisfy Eq.(5) is one of our central results. In Fig. 5 we show =2
a sequence of moments as a function of the moment number £
n. The different curves, starting from below, represent hier- ©
archical orders 1-9sizesL=2-256). One readily notes
convergence to a definite law. The inset shows a comparison
between the growth afi! and that of moments for the par-
ticular case ofp=0.1. The asymptotic behavior is already 0.45
reached at =128, larger sizes falling on the same curve.
For values close tp=13, the moment sequence has a n

characteristic sawtooth shape, where even moments are at g g, The derivative of I"/L as a function of the moment
the crests and the odd at the troughs. Such structure is NOt@mber, for sizeL =225 (last six orders collapse onto the same
finite size effect. We have checked this for uplte 2 on  curves) As p decreases the curves approach the asymptotic value
the hierarchical lattice. Ap— 3 all the odd moments go to In 2. Note the change from the sawtooth behavior alpv@.07 to
zero, while the even remain finite, as expected. On the othefollinearity. Shoulder features, developing at highermove al-
hand, asp is reduced the sawtooth disappears, first for themost undeformed in the positive direction asp increases.

+——+ 256

higher moments and then for the lower. In this respect there

n

0.55 i

60 80 100
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FIG. 8. The figure shows the behavior &f/(J) as a function of

FIG. 7. The “free energy’(In J)/L, as discussed in the text, as e . . .
gy"(In J) L for the p values indicated. As the plot is semilog the exponential

a function ofp. Note that the curves extrapolated from even and . . .
odd moments merge around the threshold for the transition obtainetaeh"’wIor abovep=0.03 is evident.
from Monte Carlo.

from exponential growth{for p>p.) to logarithmic growth
t(for p<pc) [8,24]. Shapir and Wang, on the other hand,
found a change from efjin(1—2p)[2a\L] for p<p. to
exd|In(2(1-2p)?)|2L] for p>p.. However, they observed
S‘that the former result is incorrect because partial overlaps of
pairs of walks should be accounted for.
Simulations on regular lattices to date can only do very

est value ofp one notes the sawtooth behavior, while i
disappears for all moments belgw=0.1. Nevertheless, ad-
ditional structure is observed at moments beyard40 for
p=0.075 andp=0.1, where a shoulder develops and move
toward largem values a9 increases, undeformed, in a soli-
tonic manner. Although the analysis of these structures is : . . o .
beyond the scope of this paper, it is interesting to analyze ipoorly in proving the surmized Iogar|_thm|c bezkéawor b_elow
in the light of a mapping to a one-dimensional many bodypc' Here we have computeﬁ]/_(J} fo sizesl. =2 for vari-
problem[23]. In such a mapping the moment number corre-OUSP Vall_JeS In a few_CPL_J minutes. We _have found a clear
sponds to the number of particles interacting like charges ofionfirmation of logarithmic to exponential crossover @as
contact. Thus we speculate that the shoulders could be récreases. Figures 8 and 9 shad/(J) and its derivative as
lated to sudden changes in the character of the ground staflefunction ofL, respectively. The scales used permit rapid
as the particle numbémoment numbgrincreases. We will identification of the.correspondlng behavior. It shoulq bg
discuss this in more detail in Sec. VI. noted that, on Euclidean lattices, the reported behavior is
For even smallep values the curve starts to resemble the#3/(3)> (In L)*, where,.~1 but depends weakly op. _
well known p=0 limit given by Eq.(4), and depicted as a On h|erarch|qal lattices we can also dgmonstrate analyti-
flat line at In 2 in Fig. 6. From the figure one can graphically €ally that there is no transition in the varia#d/(J). Fol-
identify the value ofIn J) as a function op using the rela-
tion dIn(Jn)/dnl,,_o=(In J). The quantityIn J) is a “free en- 10°
ergy” that may reflect the sign transition. We have followed
the value at intercept mentioned before as a functiomp of
below p=0.2. When the moments “zigzag” there are two
possible extrapolations, while below the assumed transitior_,
the moments lead to a single prediction of the free energyg 102 |
The results are depicted in Fig. 7, where the curves mergeA
aroundp.=0.07 within the error of the extrapolation proce- ¥
dure. Such a value coincides with our Monte Carlo predic-z 10° |
tion. 5
One can validate the relevance of hierarchical lattices by
checking the exact computation of the variabl®(J) with 0
8J=1/(3%)—(J)2. Such a quantity was discussed extensively
in previous work[2,4,8,24. As mentioned before§d/{J) 10° ‘ ‘
was initially suggested as a candidate for a kind of order 107 10” 10 10
parameter that diverged exponentially above the transitior 107L
and went to zero below. Observations by Shapir and Wang
[4] showed, nevertheless, that path correlatiGer®ssings FIG. 9. The figure shows the derivative of the data in Fig. 8.
invalidated the vanishing of the parameter for any value oHere the logarithmic behavior @f)/(J) is evident. The dotted line
p. It has been argued that for smallthere is a crossover is a guide for the eye for L/ behavior.
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lowing Cook and Derrid@21], Eq. (3); for the first two mo-  This growth is extremely fast, although madyalues will

ments, can be written for genetalas be degenerate for any particular disorder realization. Note
) that whileL =16 is easily accessible, going an order further
(Im+)=b(Im)*, puts the calculation out of reach, no intermediate sizes being

(6)  available on hierarchical lattices. Far=32 we have re-
sorted to a coarse-graining procedure in the following man-
ner: the exact results far= 16 involve 175 terms which we
cannot exactly evolve to the next order. Nevertheless, we can
make a coarse-grained distribution by averagih@ccur-
8Jmi1 |2 1[1—j3(m) rences in groups of seven to obtain 25 different values. One
(<J >) b iZ(m) (7) can then go to up td.=64 by repeating this procedure.
m+1 12 Beyond such a size, the coarse-graining procedure does not

It is simple to determine that, has in general three fixed incorporate sufficient detail to see anymore changes in the
points:j,=0, 1, and 1/6—1). Forb>2 (d.;>2) a critical  distribution, so within our resolution we have achieved its

fixed point arises, andJ/(J) exhibits a phase transition as lIMit form. o

NSS proposed. On the other hand, for 2 there are only Figure 1Qa) shows the probability distribution fot

two trivial fixed points:j,=1 is unstable anil, =0 is stable, _:16 for_5|gn|f|cant values op. The probab_lllty dlstrlbu_tlon_
indicating thatdJ/(J) always diverges as found above. Val- IS stonishingly complex, even for small sizes, revealing rich
ues ofj, close to one correspond 0, while j, close to interferences in the pgth_sun_]s Note th_at it would be hope-
zero correspond tp— 1. Analyzing the behavior of the re- |€SS t0 sample the distributioR(J) using Monte Carlo as
cursion forj, near thej ,=0 fixed point, one can derive from there are 60 to 130 orders of magnitude of probability. Fig-
Eq. (6) that 63/(J)~ 3 exgL(|In j2(0)|+%j§(0))]. The be- Ure 1.(Ib) shows_ differentp values f_or a sample =32 as a
havior close toj,= 1, which should be logarithmic, is also function of p using the coarse-graining procedure described

verified (numerically, although we have not arrived at a above. As expected, the distribution is symmetric for

simple closed expression. In summary, hierarchical lattices 0.5 and gains asymmetnyAP+0) asp moves toward

provide similar results to those expected on Euclidean lat?€"°: Note thaP(J) falls more slowly than exponential, on

tices, thus seeming a good testing ground for the sign trarfVerage, about the peak value. The speed with which the

sition. distribution appears symmetric beyoq=0.1 is notable.

As a final word, we have computed higher order Cummu_This feature is understood in the “zigzag” behavior of the

lants ofJ, finding no features of special interest related to thgnoments, where odd moments are much smaller than even

transition. The only result worth mentioning is that moments and their separation increases exponentialtyiss
In(C;)*/L=1n 2 for p=0, whereC; is thejth cummulant of |nc|[|ea§ed. . . o :
J. In what follows we will take advantage of the special aving the mformatlon of the exact d|str|t_)ut|on one s
structure of hierarchical lattices to compute the full probabil-f"lISO able to obtaln. th? exact order paramﬁté’rmtrqduced
ity distribution for J. in Sec. III_. Nc_) qualitative differences were found with curves
reported in Figs. 1 and 2, at least to sizes32, so sampling
of AP, involved in Monte Carlo simulations, seems to be
good enough to draw the conclusions about the transition
Monte Carlo sampling of the distribution df is handi- (see Sec. Il
capped by the models’ distribution broadness. For such rea- In Fig. 11 we have depicted the distribution for 64 and
sons, Wanget al. [5] undertook an exact enumeration study p= 0.5 without joining the points for the probability ampli-
to probe the NSS order parametaP=P(J>0)—P(J tude(as was done in Fig. 20A fractal structure is apparent.
<0). Because of the high computer demand of exact enufhe whole distribution, in the shape of an approximate tri-
meration, they could only access sizeslLof 10 for all p. angle, is built from scaled, identical triangular structures up
Here we use a scheme, on hierarchical lattices, permittingp the resolution achieved by the coarse-graining procedure.
access toL=16 exactly for allp and a sampling of the A similar complexity is expected for the sign problem on
distribution for L=64. The procedure is as follows: As a Euclidean lattices.
hierarchical lattice is built recursively following a chosen  An interesting final point to make in this section is that, in
motif, one can write the following recursion relation for the view of the unique relation between distribution and mo-
probability distribution: ments(see Sec. Y, it is possible to use known inversion
formulas[22]. In this way one could derive the limiting dis-
tribution exactly to any order desired.

(I2: ) =b(IZ)3+b(b—1)(Im)*.

Now, after definingj,(m)=(J.,)%/(J2) one can write a re-
cursion relation for8J/(J) as

V. PROBABILITY DISTRIBUTION FOR J

4
PocaD)=11 | Prl7)0Q= mame= mama)do,
(8) VI. SUMMARY AND DISCUSSION

where 7, , and 73 , denote contiguous elements on separate \We have provided evidence of the existence of a phase
branches of the hierarchical latticd?;=pd(7—1)+(1  transition for the directed path sign model on hierarchical
—p)&(n+1), wherep is the sign probability discussed in |attices. Nontrivial finite size scaling of the order parameter
previous sections. The number of possible outcomed far  close to the transition points to a second order phase transi-
number of different paths goes a2 1 (32768 forL  tion as found from mean field type approaches. From nu-
=16 andm=5, and 2 147 483 648 foL =32 andm=6).  merical computations, the threshold on diamond hierarchical
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FIG. 10. (a) The exact probability distribution fok =16 at thep values indicated. Note the self-affine structure; the central peak is
repeated at subsidiary local maxinta) The figure shows the coarse-grained distributionlfer32.

lattices isp.,=0.071+0.001, and the correlation length ex- marks by Roux and Coniglip18] of anomalous accumula-
ponent isv=1.85+0.07. The latter exponent is very differ- tion of probability atJ=0 are confirmed. Nevertheless, their

ent from that of percolation on the same lattice
=1.635... .
The study of exact moment recursion relations ¢af)

claim that the hierarchical lattice becomes essentially one
dimensional for largé., and thus, that the probability distri-
bution should approach a Gaussian, is not borne out from our

led us to the definitive conclusion that the moments uniquelyesults. One obvious difference is that, for a Gaussian, all
determine the probability distribution, according to Carle-cumulants larger than 2 should be 0, which is in disagree-

man’s theoreni22]. Using extrapolations of the derivative of
integer momentsd(J)"/dn) to n=0, we were able to find a

“free energy” {In J). Such a free energy splits into two pos-
sible extrapolationgfrom even and odd momentas one
goes through the transition point by increasingThe latter
transition point coincides with that found in Monte Carlo -2
simulations of the sign transition. We have not completely
interpreted this connection in the present paper. Furthermorei
we studied the high moments of the partition functibbe-
low the transition, and found a very interesting nonmono-
tonic behavior including step structures that propagate on the™
moment number axis, gs changes.

Using the fact that moments can be computed exactly we
studied the celebrated rati®)/(J) proposed by NSS. We
have shown, analytically, that indeeddg;=2 the ratio does

4|

n P(J

%}

not show a transition as suspected numericpdly8,24 on 8,15
regular lattices. Furthermore, we have shown that hierarchi-

cal lattices exhibit the same logarithmic to exponential cross-
over for §J/(J) surmized in Refs[8] and[24].

-0.05 0.05

Jri2-!

0.15

FIG. 11. The probability distribution fok =64 andp=0.5 us-

Finally, we studied a recursion relation for the full prob- ing the coarse-grained distribution for=32. To emphasize the
ability distribution for J, finding an extremely complex self-similar structure we have not to joined the points in the graph

structure even for systems as smalllas 16. Previous re-

as in Fig. 10.



PRE 58 DIRECTED PATHS ON HIERARCHICAL LATTICES . .. 4253

ment with exact results of Sec. IV. No evident signal of thelaw of n. Therefore, Zhang's results represent some kind of
transition, beyond that already inferred from the order paintermediate regime. A more detailed solution of E)
rameterA P, is found from the full probability distribution.  might yield the “solitonic” patterns reported hefsee Sec.
Medina and Kardaf3] studied the moments for the sign V), which are not well understood. As speculated in Sec. IV,
problem, interpreting them as partition functions febody  the ground state formed by particles with attractive and re-
one-dimensional Hamiltonians with contact interactions.pulsive interactions might change, suddenly, at critical par-
Most of the focus, however, has been on the lowehavior ticle numbers generating discontinuities in the derivative of
that yields cummulants of & Nevertheless, it would be In{J". More work is needed in this direction.
interesting to interpret the findings of this paper, regarding The highly nonmonotonic behavior displayed by the mo-
high moments, in the light of a many body theory. A previ- ments calls for caution regarding the regime of validity of
ous effort by Zhand 23] focused on the Hartree-Fock ap- moments dependencies on the moment numheported in
proximation valid only for a large number of particles the literaturg 3,23]. Claims of a nonunique relation between
(higher moments In Zhang's approach the sign model was moments and the probability distributi¢i] were based on
equivalent to finding the ground state of the many bodyexpressions only valid in the—0 limit, which is clearly
Hamiltonian unrelated to the constraints of Carleman’s theof26}. Ob-
viously, the conclusions of this paper are only valid in the
—S 24 e dx—x) | W(xg o) measure to whi_ch hierarchical lattices agree with continuum
L T R 1 %n results. For a discussion of the latter point, see RES].

2n
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