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Directed paths on hierarchical lattices with random sign weights
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We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative
sign with a probabilityp. Such path sumsJ have been used to model interference effects by hopping electrons
in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings,
ignored by mean field approaches, while still permitting analytical treatment. Here we perform a scaling
analysis of the controversial ‘‘sign transition’’ using Monte Carlo sampling, and conclude that the transition
exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the
moments^Jn& always determine, uniquely, the probability distributionP(J). We also derive, exactly, the
moment behavior as a function ofp in the thermodynamic limit. Extrapolations (n→0) to obtain^ ln J& for odd
and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis
of high moments yield interesting ‘‘solitonic’’ structures that propagate as a function ofp. Finally, we derive
the exact probability distribution for path sumsJ up to lengthL564 for all sign probabilities.
@S1063-651X~98!04610-8#

PACS number~s!: 02.50.Ng, 64.60.Cn, 72.20.2i
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I. INTRODUCTION

Sums of directed paths are present in numerous mode
disordered systems. Polymer configurations in a disorde
matrix, dynamics of interfaces grown by deposition@1# and
Feynman path sums for electron hopping between impur
@2,3# are only a few of the relevant examples. In this pap
we focus on the latter example, involving a model first intr
duced by Nguyen, Spivak, and Shklovskii~NSS! for inter-
ference effects in the strongly localized regime@2#.

In the directed path sign model one studies the sum o
possible directed paths between two sites on a lattice.
each lattice bond, one places a random sign with probab
p. Each directed path evolved is then computed by multip
ing the values of the bonds it crosses. Finally the sumJ of all
paths is obtained. The proponents of the model@2# obtained,
numerically for small systems, that a second order transi
occurred atpc;0.05 between a phase with preferential si
~for the path sumJ), and a phase with no preferential sig
NSS also offered appealing arguments based on the beh
of dJ/^J&. Presumably, such a parameter grows expon
tially above the transition, while it goes to zero belowpc .
The physical relevance of this transition lies in the fact tha
may signal the change between Aharonov-Bohm oscillati
of period hc/e and those ofhc/2e @2# in the context of
hopping conduction.

The NSS argument was later contended by Shapir
Wang @4#, arguing that correlations between paths impli
that dJ/^J& does not necessarily go to zero for anyp. Sub-
sequently, Wanget al. @5# used an exact enumeration schem
to probe the transition for small lattices of maximum si
L59. The work found no evidence of a transition abo
negative sign probabilityp50.02. Such conclusions wer
supported by Zhaoet al. @6# on the basis of numerics, fo
large square lattices, where it was assumed that the trans
PRE 581063-651X/98/58~4!/4246~8!/$15.00
of
ed

s
r,
-

ll
n

ty
-

n

ior
n-

it
s

d

ion

did not exist abovep50.025 in two dimensions. Neverthe
less, the decay of the order parameterDP as a function of
system size was found to be anomalously slow for finitep
~see also Ref.@3#!. Thus, more recently, Spivak, Feng, an
Zeng @7# discussed numerical results that suggest a fin
jump in the order parameter indicating a first order transit
for the sign problem. The authors also implied that the m
ments^Jn& increase faster thann! asn→`, indicating there
is no unique relation between^Jn& and the probability distri-
bution P(J). This is an important point since the momen
in such a case, may not contain information about the tr
sition. Finally, in a recent paper by Nguyen and Gamie
@8#, a renewed extensive study of the parameterdJ/^J&
proves that, at least according to such a parameter, no
sition exists; only a strong crossover from logarithmic
exponential behavior is observed.

Besides the numerical approaches, mean field type
proximations by Obukhov@9# point to a second order trans
tion for dimensionsd>4. Furthermore, Derrida and Coo
@10# also took up the problem, analytically, using a spa
matrix approach. They generalized the model to rand
phases, which includes random signs as a special case.
approach is mean field in nature, and results in a phase
gram where the sign transition is of second order@11# ~see
also Ref.@12#!. Nevertheless, mean field results may not a
ply to lower dimensions due to the importance of path cro
ings @4#.

Here we address the following issues:~i! What is the or-
der of the sign transition through a scaling analysis of
order parameter proposed?~ii ! Do moments of the path sum
determine the probability distribution uniquely?~iii ! What is
the exact behavior of the parameterdJ/^J& above and below
the transition? An interesting perspective will be gained
using a hierarchical lattice: Such lattices, while still am
nable to analytical manipulation, include crucial path cor
4246 © 1998 The American Physical Society
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lation effects absent in the mean field.
The paper is organized as follows: Section II discusses

sign model and describes hierarchical lattices. In Sec. III,
perform detailed Monte Carlo simulations, close to the tr
sition, for systems up to sizeL5512. A scaling analysis is
performed for the order parameterDP5P(J.0)2P(J
,0) to distinguish between first and second order tran
tions. In Sec. IV we study the moments^Jn& exactly, using
moment recursion relations@13#. We find that moments de
termine the distribution uniquely according to Carlema
theorem, and find possible indications of a phase transi
from odd and even moment extrapolations ton50. In this
section we also discuss the high moment behavior, unvei
interesting structures as a function of the sign probabilityp.
Subsequently, we probe the parameterdJ/^J& exactly, show-
ing its unambiguous crossover between exponential
logarithmic behavior. In Sec. V we obtain the exact proba
ity distribution for lattice sizesL516, and sample the distri
bution for up toL564 as a function ofp. We end with the
conclusions and a discussion of the mapping of the mom
to an n-body partition function in one dimension as a co
tinuum model that might aid in explaining the curious hi
moment behavior.

II. SIGN MODEL

Imagine two reference points on a lattice between wh
one would like to evolve all possibledirected pathsand
compute a ‘‘partition function’’

J5(
i

G i , ~1!

where G i represents each individual contributing path. B
directed it is meant that paths always propagate in the
ward direction without loops or overhangs. The random m
dium in which these paths evolve can be represented by
signing local weights@14# on the bonds or sites that ar
picked up by the paths as they wander to their final dest
tion. Such a model has been used as a paradigm simula
for example, a coarse-grained polymer or interface wand
ing in a random matrix with locally favorable energy minim
@14#. The model is interesting because it yields anomal
lateral wandering and energy exponents for the interfa
polymer as compared to those generated by simple diffus
signaling a new disorder-induced universality class in
11) dimensions.

Another application, in an entirely different field, is in th
context of variable range hopping@15#, a mechanism for
conduction in insulators. In this context, one also needs
sum over Feynman paths to compute the transition proba
ity, between impurities, of current bearing electrons. T
Feynman paths, in this case, are directed because the
tunneling paths. Any elongation of the latter, in the form
loops or overhangs, is exponentially less probable. For
ther justification of the model we refer the reader to the
view in reference@3#. NSS studied such tunneling process
and proposed a directed path model where the local wei
are random signs@2#. In such a model, the pathG i is a prod-
uct of the signs it picks up en route to the final site. Writi
Eq. ~1! more explicitly,
e
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J5(
G i

)
i

h i , ~2!

where h i is a random sign according to the distributio
P(h)5pd(h21)1(12p)d(h11). The probability p in
the NSS model emulates the relative abundance of le
above and below the Fermi energy@2#. This model has been
very successful in explaining qualitative and quantitative f
tures of conduction in the strongly localized regime. In p
ticular, intriguing interference effects producing a charact
istic periodicity of magnetic field oscillations@16# and
changes in the localization length due to nonlocal effe
@3,17#. In spite of the seemingly different nature of disord
in the NSS model, replica arguments and numerics h
shown that it belongs to the same universality class of
rected polymers with positive weights@3,18#, at least forp
close to1

2.
We have taken up the sign model on hierarchical lattic

as mentioned in Sec. I. A hierarchical lattice is a recurs
structure built by repeating a chosen motif@19#. Depending
on the latter motif, one can build integer dimensional obje
emulating Euclidean lattice. For this work we chose t
Berker lattice or diamond. Such a motif~see Fig. 1! has a
parameterb corresponding to the number of branches b
tween the initiali and final f points. The lattice size is re
lated to the recursion orderm asL52m21, i.e., the number
of bonds on any directed path betweeni and f . The number
of bonds on the lattice~or mass! is given byM5(2b)m21,
so that the effective dimension of the lattice isdeff51
1 (log b/log 2). In this work we will useb52 except if oth-
erwise stated. Qualitative features of critical behavior
many statistical models are correctly reproduced on s
structures with no unphysical effects. In fact, mapping
hierarchical lattices is the basis of the Migdal-Kadan
renormalization procedure, of frequent use in critical ph
nomena. As noted above, an important advantage of hie
chical lattices over either Bethe lattices/mean field a
proaches is that path intersections are taken into acco
Thus we expect that the resulting simulations will be mo
faithful to low dimensional behavior. In fact, we will presen
in Sec. IV, further evidence of the adequacy of hierarchi
lattices making contact with known recent results on the s
transition.

FIG. 1. Hierarchical lattices are built by repeating a chosen m
tif; each bond turns into a diamond recursively. The figure sho
successive iterations of the lattice and the corresponding lengL
between end pointsi and f . Examples of a directed path at eac
order are indicated by contiguous arrows.
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III. SIGN PHASE TRANSITION IN TWO DIMENSIONS

In this section, we have undertaken Monte Carlo simu
tions on hierarchical lattices to check for scaling properti
Paradoxically, scaling has only been discussed once be
in connection with the transition@18#, and it is a primary tool
to assess its nature. It will be especially useful to clea
distinguish between first order and second order transitio

Hierarchical lattices were generated toL5512 or order
10. Averages were taken over 20 000 realizations of diso
for a series ofp values between 0 and 0.5. As the size of t
system increases, more detailed data were collected clo
the transition regime 0.05,p,0.1. Figure 2 shows Monte
Carlo data for the order parameterDP as a function ofp. A
definite plateau atDP51 develops asL increases for lowp,
signaling a definite change in the order parameter~positively
signed paths dominate!.

For the proposed order parameter we should expect
scaling formDP5 f „(p2pc)L

1/n
…. Figure 3 shows a good

collapse for the same data as the previous figure. As
order parameter is always between 0 and 1, we only nee
find pc and the correlation length exponentn. For the hypo-
thetical transition we find the valuespc50.07160.001 and
n51.8560.07 (1/n50.54). The latter exponent is very di
ferent from that of percolation on these latticesn
5 ln 2/„ln 21 ln(32A5)…51.63529...; so the role of percola
tion, if any, is not apparent. If the transition were first ord
the exponent 1/n would be the dimensionality of the syste
d @20#. The nontrivial scaling found can also be seen
taking the derivative of the order parameter and plotting
maximum as a function of the system size. These criteria
out a first order transition.

We have also monitored the evolution ofpc(L) with size.
The specific value ofpc(L) was found from the peak value
of the derivative of the order parameterDP. The resulting
values are plotted in Fig. 4, where, within error bars,
values of 1/n and pc(`) are confirmed. Summarizing, sca
ing is very good aroundpc50.07, anddoes notcorrespond

FIG. 2. The figure shows the order parameterDP5P(J.0)
2P(J,0) as a function of the sign probabilityp for system sizes
indicated. Averages were performed over more than 20 000 rea
tions of randomness. Note the formation of a plateau atDP51 for
small p.
-
.
re

y
s.

er

to

he

e
to

r

y
s
le

e

to the scaling of a first order transition. Furthermore, there
no sign of a discontinuity in the order parameter, as s
gested in Ref.@7#. We thus conclude that, on hierarchic
lattices, the transition exists and is second order as m
field predicts. These conclusions are in agreement with w
by Roux and Coniglio@18# on hierarchical lattices. There
they analyzed the variablea i5(ni

12ni
2), whereni

6 is the
fraction of positive~negative! paths arriving at sitei , and
they suggested a clear positivea phase. The order of the
transition for hierarchical lattices was not analyzed in de
in their paper. Nevertheless, they noted an undue emph
of hierarchical lattices on thea50 result, and the possible
impact of this on the scaling properties of various quantiti
We will come back to such observations, briefly, in Sec.

IV. MOMENT RECURSION RELATIONS

A statistic we can probe exactly on hierarchical lattic
are the moments of the probability distribution. This is po

a-

FIG. 3. Same data as in Fig. 2 after collapsing the curves
different system sizes. The appropriate choices forpc and n, the
transition threshold and the correlation length exponent, are i
cated.

FIG. 4. The figure shows the value ofpc(L), evaluated from the
peaks of the derivative of the order parameter, as a function
(1/L)1/n. The last five sizes fromL532– 512 have been fitted by
least squares method to yield the asymptotic valuepc(`)50.072
indicated.
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sible because of recursion relations derived by Cook
Derrida @21#, and generalized to arbitrary moment and hi
archical order~system size! by Medina and Kardar@13#. The
recursion relation forb52 is

^Jm11
n &5(

s50

n
n!

~n2s!!s!
@^Jm

s &#2@^Jm
n2s&#2, ~3!

where n is the moment number andm is the hierarchical
lattice order. This expression is readily generalized to ot
integerb by changing the binomial factor to a multinomia
and including the additional branches. Hence one can e
late higher-dimensional networks. The simple form of th
recursion permits one, given the local moments at order 1
compute moments to any given lattice size. Appropriate p
gramming of the recursion relations, with arbitrary precisi
computations, is linear in time with lattice order.

The behavior of the moments for the sign model is e
tremely rich, as we shall see in the following. As found
Ref. @13#, after a few hierarchical orders, the valu
ln(^Jm

n &)/L converge rapidly to a limiting form as a functio
of n. Such limiting form is important because it also signa
the convergence to a unique limiting distribution, at leas
moments do not grow faster thann! @22#. The asymptotic
form of the moments can be obtained forp50 @13,21#,

ln^Jn&
L

5nS 12
1

L D ln 2; ~4!

that is, moments grow exponentially withn for p50. Nev-
ertheless, for 0,p, 1

2, lower moments grow slightly faste
than exponentially@exp(na), with 1,a,2#, gradually con-
verging to exponential growth for larger moments. The lat
implies, according to the condition

(
n50

`

^J2n&21/2n5`, ~5!

that the moments determine the distribution uniquely. Th
are various forms of such a theorem, but the above is
strongest version due to Carleman@22#. If one substitutes
^J2n&;exp(2n)—our asymptotic result—above, the criterio
is satisfied. Even if ^J2n& grows slightly faster i.e.,
exp(2n ln 2n);(2n)!, the above sum diverges becau
(n1/n5`. Any faster growth would violate Eq.~5!, facto-
rial growth being the borderline case. That the moments^Jn&
satisfy Eq.~5! is one of our central results. In Fig. 5 we sho
a sequence of moments as a function of the moment num
n. The different curves, starting from below, represent hi
archical orders 1–9~sizes L52 – 256). One readily note
convergence to a definite law. The inset shows a compar
between the growth ofn! and that of moments for the par
ticular case ofp50.1. The asymptotic behavior is alread
reached atL5128, larger sizes falling on the same curve

For values close top5 1
2, the moment sequence has

characteristic sawtooth shape, where even moments a
the crests and the odd at the troughs. Such structure is n
finite size effect. We have checked this for up toL5220 on
the hierarchical lattice. Asp→ 1

2 all the odd moments go to
zero, while the even remain finite, as expected. On the o
hand, asp is reduced the sawtooth disappears, first for
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higher moments and then for the lower. In this respect th
appears to be a phase transition for each moment at diffe
values ofp, in a way reminiscent of that discussed by Co
and Derrida@21# ~in their case as a function of ‘‘tempera
ture’’!. The transition for the first two moments occurs clo
to p50.075, which is close to that found from Monte Car
simulations in Sec. III. On this basis it is plausible that t
disappearance of sawtooth shape is related to the transi

Figure 6 shows a set of curves fordln(^Jm
n &/L)/dn, and

various values ofp and L5217 up to n5100. The last six
orders of the hierarchical lattice collapse on the same cu
indicating that we have achieved asymptotics. For the hi

FIG. 5. The moments ln̂Jn&/L as a function of the moment num
ber n for the lattice sizes indicated. The figure shows the ra
convergence to an asymptotic result. In the inset, we show
while the initial moments grow faster than exponential they nev
theless grow slower thann!, so there is a unique relation betwee
moments and probability distribution.

FIG. 6. The derivative of ln̂Jn&/L as a function of the momen
number, for sizeL5215 ~last six orders collapse onto the sam
curves.! As p decreases the curves approach the asymptotic v
ln 2. Note the change from the sawtooth behavior abovep50.07 to
collinearity. Shoulder features, developing at highern, move al-
most undeformed in the positiven direction asp increases.
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est value ofp one notes the sawtooth behavior, while
disappears for all moments belowp50.1. Nevertheless, ad
ditional structure is observed at moments beyondn540 for
p50.075 andp50.1, where a shoulder develops and mov
toward largern values asp increases, undeformed, in a so
tonic manner. Although the analysis of these structure
beyond the scope of this paper, it is interesting to analyz
in the light of a mapping to a one-dimensional many bo
problem@23#. In such a mapping the moment number cor
sponds to the number of particles interacting like charges
contact. Thus we speculate that the shoulders could be
lated to sudden changes in the character of the ground
as the particle number~moment number! increases. We will
discuss this in more detail in Sec. VI.

For even smallerp values the curve starts to resemble t
well known p50 limit given by Eq.~4!, and depicted as a
flat line at ln 2 in Fig. 6. From the figure one can graphica
identify the value of̂ ln J& as a function ofp using the rela-
tion dln^Jm

n &/dnun→05^ln J&. The quantitŷ ln J& is a ‘‘free en-
ergy’’ that may reflect the sign transition. We have follow
the value at intercept mentioned before as a function op
below p50.2. When the moments ‘‘zigzag’’ there are tw
possible extrapolations, while below the assumed transi
the moments lead to a single prediction of the free ene
The results are depicted in Fig. 7, where the curves me
aroundpc50.07 within the error of the extrapolation proc
dure. Such a value coincides with our Monte Carlo pred
tion.

One can validate the relevance of hierarchical lattices
checking the exact computation of the variabledJ/^J& with
dJ5A^J2&2^J&2. Such a quantity was discussed extensiv
in previous work@2,4,8,24#. As mentioned before,dJ/^J&
was initially suggested as a candidate for a kind of or
parameter that diverged exponentially above the transi
and went to zero below. Observations by Shapir and W
@4# showed, nevertheless, that path correlations~crossings!
invalidated the vanishing of the parameter for any value
p. It has been argued that for smallp there is a crossove

FIG. 7. The ‘‘free energy’’̂ ln J&/L, as discussed in the text, a
a function ofp. Note that the curves extrapolated from even a
odd moments merge around the threshold for the transition obta
from Monte Carlo.
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from exponential growth~for p.pc) to logarithmic growth
~for p,pc) @8,24#. Shapir and Wang, on the other han
found a change from exp@uln(122p)u2aAL# for p,pc to
exp@uln(2(122p)2)u2L# for p.pc . However, they observed
that the former result is incorrect because partial overlap
pairs of walks should be accounted for.

Simulations on regular lattices to date can only do ve
poorly in proving the surmized logarithmic behavior belo
pc . Here we have computeddJ/^J& to sizesL5220 for vari-
ousp values in a few CPU minutes. We have found a cle
confirmation of logarithmic to exponential crossover asp
increases. Figures 8 and 9 showdJ/^J& and its derivative as
a function ofL, respectively. The scales used permit rap
identification of the corresponding behavior. It should
noted that, on Euclidean lattices, the reported behavio
dJ/^J&}(ln L)m, wherem;1 but depends weakly onp.

On hierarchical lattices we can also demonstrate ana
cally that there is no transition in the variabledJ/^J&. Fol-

ed

FIG. 8. The figure shows the behavior ofdJ/^J& as a function of
L for the p values indicated. As the plot is semilog the exponen
behavior abovep50.03 is evident.

FIG. 9. The figure shows the derivative of the data in Fig.
Here the logarithmic behavior ofdJ/^J& is evident. The dotted line
is a guide for the eye for 1/L behavior.
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lowing Cook and Derrida@21#, Eq. ~3!; for the first two mo-
ments, can be written for generalb as

^Jm11&5b^Jm&2,
~6!

^Jm11
2 &5b^Jm

2 &21b~b21!^Jm&4.

Now, after definingj 2(m)5^Jm&2/^Jm
2 & one can write a re-

cursion relation fordJ/^J& as

S dJm11

^Jm11&
D 2

5
1

b F12 j 2
2~m!

j 2
2~m! G . ~7!

It is simple to determine thatj 2 has in general three fixe
points: j 250, 1, and 1/(b21). Forb.2 (de f f.2) a critical
fixed point arises, anddJ/^J& exhibits a phase transition a
NSS proposed. On the other hand, forb52 there are only
two trivial fixed points;j 251 is unstable andj 250 is stable,
indicating thatdJ/^J& always diverges as found above. Va
ues of j 2 close to one correspond top→0, while j 2 close to
zero correspond top→ 1

2. Analyzing the behavior of the re
cursion forj 2 near thej 250 fixed point, one can derive from
Eq. ~6! that dJ/^J&; 1

2 exp@L„u ln j2(0)u11
2 j 2

2(0)…#. The be-
havior close toj 251, which should be logarithmic, is als
verified ~numerically!, although we have not arrived at
simple closed expression. In summary, hierarchical latti
provide similar results to those expected on Euclidean
tices, thus seeming a good testing ground for the sign t
sition.

As a final word, we have computed higher order cumm
lants ofJ, finding no features of special interest related to
transition. The only result worth mentioning is th
ln(Cj)

1/j /L5 ln 2 for p50, whereCj is the j th cummulant of
J. In what follows we will take advantage of the spec
structure of hierarchical lattices to compute the full probab
ity distribution for J.

V. PROBABILITY DISTRIBUTION FOR J

Monte Carlo sampling of the distribution ofJ is handi-
capped by the models’ distribution broadness. For such
sons, Wanget al. @5# undertook an exact enumeration stu
to probe the NSS order parameterDP5P(J.0)2P(J
,0). Because of the high computer demand of exact e
meration, they could only access sizes ofL510 for all p.
Here we use a scheme, on hierarchical lattices, permit
access toL516 exactly for all p and a sampling of the
distribution for L564. The procedure is as follows: As
hierarchical lattice is built recursively following a chose
motif, one can write the following recursion relation for th
probability distribution:

Pm11~J!5)
i 51

4 E
2`

`

Pm~h i !d~J2h1h22h3h4!dh i ,

~8!

whereh1,2 andh3,4 denote contiguous elements on separ
branches of the hierarchical lattice.P15pd(h21)1(1
2p)d(h11), wherep is the sign probability discussed i
previous sections. The number of possible outcomes forJ or
number of different paths goes as 22m2121 ~32 768 for L
516 andm55, and 2 147 483 648 forL532 andm56).
s
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This growth is extremely fast, although manyJ values will
be degenerate for any particular disorder realization. N
that whileL516 is easily accessible, going an order furth
puts the calculation out of reach, no intermediate sizes be
available on hierarchical lattices. ForL532 we have re-
sorted to a coarse-graining procedure in the following m
ner: the exact results forL516 involve 175 terms which we
cannot exactly evolve to the next order. Nevertheless, we
make a coarse-grained distribution by averagingJ occur-
rences in groups of seven to obtain 25 different values. O
can then go to up toL564 by repeating this procedure
Beyond such a size, the coarse-graining procedure does
incorporate sufficient detail to see anymore changes in
distribution, so within our resolution we have achieved
limit form.

Figure 10~a! shows the probability distribution forL
516 for significant values ofp. The probability distribution
is astonishingly complex, even for small sizes, revealing r
interferences in the path sumsJ. Note that it would be hope-
less to sample the distributionP(J) using Monte Carlo as
there are 60 to 130 orders of magnitude of probability. F
ure 10~b! shows differentp values for a sampleL532 as a
function of p using the coarse-graining procedure describ
above. As expected, the distribution is symmetric forp
50.5 and gains asymmetry (DPÞ0) as p moves toward
zero. Note thatP(J) falls more slowly than exponential, o
average, about the peak value. The speed with which
distribution appears symmetric beyondp50.1 is notable.
This feature is understood in the ‘‘zigzag’’ behavior of th
moments, where odd moments are much smaller than e
moments and their separation increases exponentially asp is
increased.

Having the information of the exact distribution one
also able to obtain the exact order parameterDP introduced
in Sec. III. No qualitative differences were found with curv
reported in Figs. 1 and 2, at least to sizesL532, so sampling
of DP, involved in Monte Carlo simulations, seems to
good enough to draw the conclusions about the transi
~see Sec. III!.

In Fig. 11 we have depicted the distribution forL564 and
p50.5 without joining the points for the probability ampl
tude~as was done in Fig. 10!. A fractal structure is apparen
The whole distribution, in the shape of an approximate
angle, is built from scaled, identical triangular structures
to the resolution achieved by the coarse-graining proced
A similar complexity is expected for the sign problem o
Euclidean lattices.

An interesting final point to make in this section is that,
view of the unique relation between distribution and m
ments~see Sec. IV!, it is possible to use known inversio
formulas@22#. In this way one could derive the limiting dis
tribution exactly to any order desired.

VI. SUMMARY AND DISCUSSION

We have provided evidence of the existence of a ph
transition for the directed path sign model on hierarchi
lattices. Nontrivial finite size scaling of the order parame
close to the transition points to a second order phase tra
tion as found from mean field type approaches. From
merical computations, the threshold on diamond hierarch
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FIG. 10. ~a! The exact probability distribution forL516 at thep values indicated. Note the self-affine structure; the central pea
repeated at subsidiary local maxima.~b! The figure shows the coarse-grained distribution forL532.
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lattices ispc50.07160.001, and the correlation length e
ponent isn51.8560.07. The latter exponent is very diffe
ent from that of percolation on the same latticen
51.635... .

The study of exact moment recursion relations for^Jn&
led us to the definitive conclusion that the moments uniqu
determine the probability distribution, according to Car
man’s theorem@22#. Using extrapolations of the derivative o
integer moments (d^J&n/dn) to n50, we were able to find a
‘‘free energy’’ ^ ln J&. Such a free energy splits into two po
sible extrapolations~from even and odd moments! as one
goes through the transition point by increasingp. The latter
transition point coincides with that found in Monte Car
simulations of the sign transition. We have not complet
interpreted this connection in the present paper. Furtherm
we studied the high moments of the partition functionJ be-
low the transition, and found a very interesting nonmon
tonic behavior including step structures that propagate on
moment number axis, asp changes.

Using the fact that moments can be computed exactly
studied the celebrated ratiodJ/^J& proposed by NSS. We
have shown, analytically, that indeed indeff52 the ratio does
not show a transition as suspected numerically@4,8,24# on
regular lattices. Furthermore, we have shown that hierar
cal lattices exhibit the same logarithmic to exponential cro
over for dJ/^J& surmized in Refs.@8# and @24#.

Finally, we studied a recursion relation for the full pro
ability distribution for J, finding an extremely complex
structure even for systems as small asL516. Previous re-
ly
-

y
re,

-
e

e

i-
-

marks by Roux and Coniglio@18# of anomalous accumula
tion of probability atJ50 are confirmed. Nevertheless, the
claim that the hierarchical lattice becomes essentially
dimensional for largeL, and thus, that the probability distri
bution should approach a Gaussian, is not borne out from
results. One obvious difference is that, for a Gaussian,
cumulants larger than 2 should be 0, which is in disagr

FIG. 11. The probability distribution forL564 andp50.5 us-
ing the coarse-grained distribution forL532. To emphasize the
self-similar structure we have not to joined the points in the gra
as in Fig. 10.
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ment with exact results of Sec. IV. No evident signal of t
transition, beyond that already inferred from the order
rameterDP, is found from the full probability distribution.

Medina and Kardar@3# studied the moments for the sig
problem, interpreting them as partition functions forn-body
one-dimensional Hamiltonians with contact interactio
Most of the focus, however, has been on the lown behavior
that yields cummulants of lnJ. Nevertheless, it would be
interesting to interpret the findings of this paper, regard
high moments, in the light of a many body theory. A pre
ous effort by Zhang@23# focused on the Hartree-Fock ap
proximation valid only for a large number of particle
~higher moments!. In Zhang’s approach the sign model w
equivalent to finding the ground state of the many bo
Hamiltonian

S 2(
i 51

2n

] i
21(

i . j
eiejd~xi2xj !DC~x1¯xn!

5E0~n!C~x1¯xn!, ~9!

whereei is a charge that acts via contact interaction of
i th particle:ei51 for 1< i<n and ej521 for n< i<2n.
Zhang’s approach yieldedE0}n2. Our findings predict, from
the relation ln̂Jn&/L5E0, E05gn for largen ~see also Ref.
@3#!, whereg increases asp→0. For lowern the behavior is
nontrivial and is certainly not represented as a simple po
A

.

v
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iz

te
-

.

g

y

e

er

law of n. Therefore, Zhang’s results represent some kind
intermediate regime. A more detailed solution of Eq.~9!
might yield the ‘‘solitonic’’ patterns reported here~see Sec.
IV !, which are not well understood. As speculated in Sec.
the ground state formed by particles with attractive and
pulsive interactions might change, suddenly, at critical p
ticle numbers generating discontinuities in the derivative
ln^Jn&. More work is needed in this direction.

The highly nonmonotonic behavior displayed by the m
ments calls for caution regarding the regime of validity
moments dependencies on the moment numbern reported in
the literature@3,23#. Claims of a nonunique relation betwee
moments and the probability distribution@7# were based on
expressions only valid in then→0 limit, which is clearly
unrelated to the constraints of Carleman’s theorem@25#. Ob-
viously, the conclusions of this paper are only valid in t
measure to which hierarchical lattices agree with continu
results. For a discussion of the latter point, see Ref.@13#.
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